公告 | 会员中心 | 我要投稿 | 雁过留声 | RSS
您当前的位置:首页 > 教与学 > 教学论文

小学数学新课改论文:数学新课标下的“体验学习”

时间:2014-08-18 23:54:41  来源:  作者:  本文已影响:

[内容摘要]《数学课程标准》使用了较多的“经历……的过程,获得……的体验(感受)”,可见,数学学习离不开个体的体验。学生需要在自主探究中体验“再创造”,在实践操作中体验“做数学”,在合作交流中体验“说数学”,在联系生活中体验“用数学”。学生体验学习,是用心去感悟的过程,在体验中思考、创造,有利于培养创新精神和实践能力,提高学生的数学素养。

[关键词]新课标  体验   再创造   做数学   说数学   用数学

[正文]传统的数学教学是学生被动吸收、机械记忆、反复练习、强化储存的过程,没有主体的体验。沐浴着新课程的阳光,我们“豁然开朗”:教师不是“救世主”,教师只不过是学生自我发展的引导者和促进者。而学生学习数学是以积极的心态调动原有的认知和经验,尝试解决新问题、理解新知识的有意义的过程。

  《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,就是个体主动亲历或虚拟地亲历某件事并获得相应的认知和情感的直接经验的活动。让学生亲历经验,不但有助于通过多种活动探究和获取数学知识,更重要的是学生在体验中能够逐步掌握数学学习的一般规律和方法。教师要以“课标”精神为指导,用活用好教材,进行创造性地教,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,从而达到学会学习的目的。

一、     自主探究——让学生体验“再创造”。

荷兰数学家弗赖登塔尔说过:“学习数学的唯一正确方法是实行再创造,也就是由学生把本人要学习的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造工作,而不是把现成的知识灌输给学生。”实践证明,学习者不实行“再创造”,他对学习的内容就难以真正理解,更谈不上灵活运用了。

如学习小数除法时,计算“9.47÷2. 7”,      3 . 5

竖式上商3.5后,余下的2究竟表示多少,

[1] [2] [3] [4] [5] [6] 下一页


  2.7   9.4 .7    

学生不容易理解。于是,我在横式上写出        8 1

9.47÷2.7=3.5……2,让学生判断是否正确。     1 3 7

经过独立思考,不少学生都想到了利用除法      1 3 5

是乘法的逆运算来检验:3.5×2.7+2≠9 .47,        2

得出余数应该是0.2而不是2,在竖式上的余数2表示2个十分之一,即每次除后的余数数位与商的数位一致。

再如学完了“圆的面积”,出示:一个圆,从圆心沿半径切割后,拼成了近似长方形,已知长方形的周长比圆的周长大6厘米,求圆的面积(下图)。乍一看,似乎无从下手,但学生经过自主探究,便能想到:长方形的周长不就比圆周长多出两条宽,也就是两条半径,一条半径的长度是3厘米,问题迎刃而解。

 

 

 


教师作为教学内容的加工者,应站在发展学生思维的高度,相信学生的认知潜能,对于难度不大的例题,大胆舍弃过多、过细的铺垫,尽量对学生少一些暗示、干预,正如“教学不需要精雕细刻,学生不需要精心打造”,要让学生像科学家一样去自己研究、发现,在自主探究中体验,在体验中主动建构知识。

二、实践操作——让学生体验“做数学”。

教与学都要以“做”为中心。陶行知先生早就提出“教学做合一

上一页  [1] [2] [3] [4] [5] [6] 下一页


”的观点,在美国也流行“木匠教学法”,让学生找找、量量、拼拼……因为“你做了你才能学会”。皮亚杰指出:“传统教学的特点,就在于往往是口头讲解,而不是从实际操作开始数学教学。”“做”就是让学生动手操作,在操作中体验数学。通过实践活动,可以使学生获得大量的感性知识,同时有助于提高学生的学习兴趣,激发求知欲。

在学习“时分秒的认识”之前,让学生先自制一个钟面模型供上课用,远比带上现成的钟好,因为学生在制作钟面的过程中,通过自己思考或询问家长,已经认真地自学了一次,课堂效果能不好吗?如:一张长30厘米,宽20厘米的长方形纸,在它的四个角上各剪去一个边长5厘米的小正方形后,围成的长方体的体积、表面积各是多少?学生直接解答有困难,若让学生亲自动手做一做,在实践操作的过程中体验长方形纸是怎样围成长方体纸盒的,相信大部分学生都能轻松解决问题,而且掌握牢固。

[1] [2] 下一页

上一篇:数学课堂如何发挥学生的主体作用 ; 下一篇:如何在课堂上关注学生,尊重学生的人格
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
推荐资讯
百度
相关文章
    无相关信息
谷歌
栏目更新
淘宝
栏目热门